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The establishment of an upstream intrusion of a buoyant fluid discharged into an 
open-channel flow of uniform density and finite depth is studied numerically using 
the full Navier-Stokes and diffusion equations. The problem is posed as an initial- 
boundary-value problem for the laminar motions of a Boussinesq fluid. The equations 
are integrated numerically by finite-difference methods. The flow patterns produced 
are controlled by the influx of buoyancy; therefore they are characterized by an inflow 
densimetric Froude number. A comparison with available experimental data provides 
favourable support to the theoretical predictions. The critical value of densimetric 
Froude number of the source of a vertically downward inflow a t  the free surface of 
a channel is determined. For densimetric Froude number less than critical, an 
intrusion is established on the upstream side of the source. Because dissipative 
mechanisms associated with viscosity take a finite time to intervene, the intrusion 
starts as an inviscid gravity current with a propagation speed greater than the surface 
velocity of the stream. The front speed is proportional to the phase velocity of long 
internal waves. Subsequently, the front decelerates as the interfacial friction, and, 
if applicable, the boundary frictional forces increase simultaneously with mass 
entrainment across the interface. The current slows down towards a two-zone 
equilibrium: (1)  the zone mcompassing the current behind the frontal zone, where 
a steady state is approached with respect to the inertial frame of reference; (2) the 
frontal zone, where the upstream speed approaches a steady speed of frontal advance, 
albeit small. The upstream intrusion alters the flow pattern of the ambient stream 
dramatically. A significant feature of both the upstream and downstream currents 
is the presence of surface convergence with concomitant downwelling near the fronts. 
As the upstream front decelerates, wavelike disturbances are excited just behind the 
front a t  frequencies characteristic of internal waves. As the front approaches steady 
state, these disturbances appear to  be damped. This problem has practical implications 
in the design of once-through cooling-water systems for power plants taking their 
cooling water from rivers. 

1. Introduction 
When an influx of buoyant fluid is introduced near the surface of an open-channel 

flow, a surface layer of the source fluid is formed. The buoyant surface layer spreads 
horizontally into the ambient stream ; its motion is driven by gravitational forces 
interacting with inertial and viscous forces. When the appropriate conditions occur, 
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the surface layer intrudes upstream of the source location. Bata (1959) and Polk, 
Benedict & Parker (1971) reported field observations of upstream intrusions of the 
buoyant efluent of several power plants discharged into streams with relatively weak 
currents. The fully developed length and interfacial density structure of the observed 
intrusions were found to correlate with an appropriately defined densimetric Froude 
number. The upstream intrusion that is produced by a constant flux of buoyant fluid 
discharged into a stream is one example of the phenomena identified as gravity 
currents. Simpson (1982) cited numerous examples of the formation of gravity 
currents in both natural and man-made flow situations. 

Because of their widespread occurrence, gravity currents have been subjected to 
extensive study in recent years. The gravity currents examined in the present study 
are related to small-scale riverine, oceanic and limnological fronts, i.e. fronts that have 
lengthscales for which Coriolis forces are negligible. The term gravity current usually 
identifies all the fluid that makes up the buoyant layer. At the leading edge of the 
gravity current there is a density front where, within a relatively narrow region of 
horizontal extent, the density changes somewhat abruptly at the water surface. 
Surface convergence and concomitant downwelling occur a t  the leading edge of a 
surface front. I n  many cases there is a characteristic ‘head’ that is generally deeper 
than the following flow. However, in some cases, e.g. for gravity currents moving with 
the ambient current and for ‘wedge’ flows, the depth of the head can be less than 
the following flow. Although there isno universal shape to  the front, i t  is distinguishable 
from the current that  follows it. 

The first prediction of the steady speed of propagation of the front of a gravity 
current moving along the bottom of an infinitely deep receiving basin of quiescent 
fluid was given by von Ktirman (1940). Benjamin (1968) elucidated von KarmAn’s 
result and pointed out the importance of a breaking head-wave to produce the balance 
of forces necessary for steady propagation. They both showed that the front speed 
U is proportional to (g’h):, where g’ is the reduced gravity and h is the degth of the 
following flow. The constant of proportionality for this case is 24. Benjamin also 
showed the importance of fractional depth hld on the frontal speed (where d is the 
depth of the channel). The densimetric Froude number U/(g’h)* decreases to about 
1 for hld = 

For the case of a linearly stratified inflow into a homogeneous receiving water of 
infinite depth, Kao (1977) showed that the steady speed of the inflow front results 
in a densimetric Froude number equal to 1 .  Britter & Simpson (1978) examined an 
inviscid current model that included mixing in the frontal region. When there is 
mixing a t  the head and the fractional depth is small, Britter & Simpson found 
experimentally that the densimetric Froude number U/(g’h)i  approaches 21 as before ; 
however, for this to be true, h must be taken as the densimetric mean level of the 
disturbed interface. This Froude number was found to vary with fractional depth and 
with the non-dimensional mixing rate q = g ’ Q / u 3 ,  where Q is the volume flow rate 
of the dense source fluid per unit width of channel. Values of q are needed to complete 
the mathematical model and can either be measured experimentally or else deduced 
from the billow properties in the mixing region as described by Simpson (1982). 

I n  other laboratory studies Simpson (1972, 1982) and Simpson & Britter (1979) 
examined the effects of boundary friction on the frontal motion of a bottom current. 
The main difference from the inviscid boundary model can be related to the height 
above the ground of the mean position of the foremost point of the head. For large 
values of Reynolds number, experimental observations suggest that  this stagnation 
point is a constant distance above the bottom equal to about +of the total head height. 

and to 2-1 for hld = i. 
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By moving the floor adjacent to the current they concluded that the magnitude of 
the shear stresses along this boundary and its effects on the ambient flowfield control 
the substructure of the frontal zone and play a role in the size of the head. 

Garvine (1981) derived jump conditions for the frontal zone of a shallow, buoyant 
surface layer. These jump conditions were proposed to facilitate the development of 
simplified hydrodynamic models of buoyant surface layers. Stigebrandt ( 1980) 
developed a hydraulic model to examine the dynamics of small-scale fronts. He 
examined the reduction of the frontal velocity caused by the secondary circulation 
induced by mixing in the frontal zone. Huppert (1982) and Didden & Maxworthy 
(1982) examined the frontal propagation of viscous gravity currents over rigid 
horizontal surfaces. Viscous gravity currents arc unsteady phenomena, i.e. their 
fronts decelerate and their depths increase with time. They occur when the conditions 
of the flowfield are such that the dispersive action of the flow is relatively strong 
in comparison with the inertia of the induced motions and the gravitational forces 
produced by the density differences. 

The detailed structure of the flowfield produced by a buoyant inflow into a 
quiescent receiving basin was examined numerically by Kao, Park & Pao (1978). Lin 
(1979) examined the same experimentally. They showed that the currents reach a 
steady speed of propagation and the layer behind the front appears to reach a steady, 
finite depth. The densimetric Froude number for the stratified gravity currents with 
finite fractional depths compared favourably with the inviscid model predictions of 
Benjamin (1968) and Kao (1977). 

Cederwall (1971) presented experimental observations of wedge flows produced by 
a buoyant line source directed vertically into a stream. Heavy saline fluid was 
discharged downward into an open-channel flow. The jet descended to the bottom 
and upon impinging spread laterally. From a two-layer flow analysis Cederwall found 
that the mechanisms of upstream intrusion of jet effluent could be characterized by 
a source-densimetric Froude number based on the ambient flow velocity and the 
buoyancy flux from the source. Upstream intrusions were observed for source- 
densimetric Froude numbers less than experimentally determined critical values 
(critical values are of order 1 or less). 

In  the present study the mechanics of the gravity current produced by a 
constant-flux, buoyant discharge into a stream are examined. The simplest model of 
a stream into which a buoyant influx can be introduced is a two-dimensional open 
channel of infinite horizontal extent and finite depth. This model contains all the 
essential features of a stream necessary to examine the gravity currents produced 
by a buoyant effluent. If the effluent is introduced near the surface of the stream with 
zero horizontal momentum and relatively small vertical momentum (as compared 
with the buoyancy flux), the source fluid does not penetrate far from the surface of 
the stream, and i t  tends to spread horizontally almost instantaneously. If the stream 
flow is sufficiently weak and the flux of buoyancy sufficiently large, upstream 
intrusion is initiated. As the depth of the pool of buoyant fluid increases, the upstream 
intruding current rapidly approaches a quasi-steady maximum speed. Soon afterward, 
the front begins to decelerate as viscous friction takes over and the upstream intrusion 
approaches a state of zonal equilibrium. The deceleration towards equilibrium is not 
constant, nor is i t  monotonically increasing with time. Once the front begins to 
decelerate, gravity waves with frequencies related to the local Brunt-Vaisala 
frequency are excited on the downstream side of the front. As a quasi-steady state 
is reached, a two-zone equilibrium is established for the upstream intrusion. One of 
the zones is the frontal zone that propagates a t  a steady speed, albeit small, against 
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FIGURE 1.  Sketch of the buoyant-inflow problem tha t  includes the 
definition of the coordinate system. 

the ambient current; consequently, i t  expands the current region behind it. In  the 
current zone downstream of the frontal zone a steady state is approached with respect 
to the inertial frame of reference. In  this zone a balance between the baroclinic 
production of vorticity and the vertical diffusion of vorticity is established. The 
present investigation indicates that  the front of the upstream intrusion is not actually 
arrested. Rather, i t  moves very slowly against the ambient, streamwise current. 

Although there is evidence that a totally arrested wedge is not possible, the 
intrusion tends toward such a state if the stream Froude number is sufficiently high. 
From a practical viewpoint, a totally arrested wedge and a very slow-moving wedge 
in equilibrium are essentially equivalent. On the other hand, as one might expect, 
for very weak streamwise current, the intrusion resembles an inflow into a quiescent 
receiving basin. 

2. The flow problem 
The flowfield produced by an instantaneously started buoyant source into a stream 

of infinite horizontal extent and finite depth is considered. Both the source fluid and 
the stream fluid are assumed miscible. Variations in the transverse direction as well 
as the effects of Earth rotation (Coriolis acceleration) are neglected. Because 
buoyancy is expected to play a dominant role in producing the predicted motions, 
the Roussinesq approximation is made, i.e. density variations are assumed to produce 
dynamically significant effects in the buoyancy term only. Mathematically, an 
initial-boundary-value problem is formulated and solved numerically for an incom- 
pressible, viscous, diffusive Boussinesq fluid undergoing laminar motions. The passive 
resistance to the motion attributable to viscous effects is explored by examining 
numerically two Reynolds numbers, viz 200 and 20. (From a practical point of view 
these Reynolds numbers may be interpreted as turbulent Reynolds numbers based 
on empirical turbulent viscosity coefficients. However, i t  is worth noting that this 
interpretation neglects the variation in turbulent transport coefficients produced by 
local density stratification.) 

The initial-boundary-value problem considered here corresponds to starting a 
source of buoyant influx Q per unit width of channel with density pe through a 
horizontal opening 1, centred a t  x* = 0 into a stream moving a t  velocity U ,  with 
density po and depth d .  The source is located a t  the top of the channel, as illustrated 
in figure 1. The buoyant influx Q is equal to  We I,, where We is the average vertical 
velocity of the source fluid a t  z* = d and -$le 6 x* < &,. We denote pe-po by (Ap) , ,  
the reference density deficit, and (p-po)/po by y ,  the density anomaly. Then 
ye = (p,-ppo)/po = (Ap),/p,, and we define g’ = yeg, where g is the acceleration due 
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to  gravity. (When the inflow density difference is caused by a temperature difference 
with the ambient stream fluid, we may relate the density to the temperature by the 
approximate equation of state y = -a(T-T,) ,  where a is the coefficient of thermal 
expansion.) We let D denote the diffusivity of the density anomaly (which may be 
taken as an eddy diffusivity in a crude model of turbulence) and let v denote the 
kinematic viscosity (which may be taken as an eddy viscosity) and assume D = u 
(i.e. we assume that Sc = v / D  = 1). 

Before we solve the coupled diffusion equation and the Navier-Stokes equations 
for a Boussinesq fluid, we will examine projected results by considering scaling 
arguments based on dimensional analysis and the known steady-state physics of the 
frontal motion of gravity currents. We introduce the timescale of the streamwise 
current, viz 7 = d / U ,  and the velocity scale associated with the influx of buoyancy, 
viz U, = (g’Q)i. Hence the following are the independent lengthscales of the problem : 
Lo = U,d/U,  h, = (Q2/g’)i, h, = (vd /U) t ,  E ,  and d. By dividing the first four by the 
last, these scales combine to form four dimensionless parameters. They are 

where Re = Ud/u ,  Qs = Q / U d ,  F, = Q;i[?JiF and F = U/(gd):. (The source- 
densimetric Froude number F, is the square root of the flux of inertia of the receiving 
stream divided by the flux of buoyancy discharged from the source, i.e. 
F, = [( Udp, W / d ) / ( ( A p (  g We Z,)]i. This indeed reduces to the previous formula.) What 
do the scales indicate about the flow problem ? 

If F, = 1, then L,/d = 1. Since Ud is a measure of speed of propagation of a density 
current discharged into a quiescent receiving basin, this implies that U, = U.  Thus 
for F, = 1 the (inviscid) speed of propagation of a characteristic density current is 
equal to the streamwise current; consequently we would expect that  F, > 1 is a 
sufficient condition for no upstream intrusion. (It will be shown by numerical 
experiment that the critical source-densimetric Froude number is somewhat less than 
1, depending upon the structure of the current.) At the condition F, = 1, hold = Q,; 
i.e. the depth of the current is of the order of the volume flux of the source divided 
by the streamwise flux. The smaller 8 is, the shallower the surface layer; also, the 
smaller the value of F,, the larger the upstream intrusion. Note that ( h o l d )  (hold)  = Qs 
is a measure of the rate of volume displaced by the surface intrusion. For upstream 
intrusion to occurit is necessary that F, < 1 .O. For this case Lo > 1 ,  Lo + h,, and ho z h,. 
In  the present study I ,  is such that the vertical input of momentum flux is small 
enough that the jet of buoyant fluid does not penetrate the depth of the developing 
surface layer. (In the numerical study the values of 2,/d ranged from 0.13 to 0.8.) 
In  summary, we observe from the lengthscales characteristic of buoyant surface 
currents that a critical condition should exist for which upstream intrusion occurs, 
and i t  may be characterized by a source-densimetric Froude number F,.  

One of the major problems in examining layered flows and fronts produced by 
buoyant effluents discharged into streams is the definition of the interface between 
the two fluids. This is especially difficult if the fluids are miscible. Because of the 
diffusive nature of the flow, the constant-density surfaces are not necessarily parallel 
to the constant-stream-function surfaces, even in the steady state. The frontal region 
and surface layer described here are defined by the structure of the density-anomaly 
field. A criterion to  determine the depth of the surface layer based on the numerical 
results is suggested and discussed later. It is based upon the balance of Torticity 
production in the upper layer once equilibrium is established. 

A second problem in examining surface layers (or overflows) is that  the prediction 
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of critical conditions is not expected to be universal. This is because the critical 
conditions depend on the structure of the current as i t  evolves. Recall that the 
characteristic speed of frontal propagation of a gravity current advancing in a 
quiescent receiving basin varies with depth of channel, density stratification of the 
current and boundary shear forces. 

To examine further details of the genesis and evolution of an upstream intrusion, 
we must resort to the theoretical model of a viscous diffusive fluid described in $3. 

3. Numerical solution 
3.1. Formulation 

The flow problem illustrated schematically in figure 1 will now be solved numerically 
by a finite-difference method. For convenience in developing the numerical procedure, 
the reference length and velocity were selected as d and U respectively. Thus the 
dimensionless coordinates are (2, z )  = (x* /d ,  z*/d) ,  the dimensionless velocity com- 
ponents (u, w) = (u*/U, w*/U)  and the dimensionless time t = t*U/d ,  where the 
asterisk denotes a dimensional quantity. With this scheme of dimensionless quantities, 
the equations that model the flow of a viscous, incompressible, Boussinesq fluid 
undergoing diffusive, two-dimensional, laminar motions in conservative form may be 
written as 

V 2 ~  = 5, (3.3) 
in which 5, y and ~ are the dimensionless vorticity, density difference and stream 
function, defined respectively by 

The Laplacian is given by V z  = az/i3x2 + az/az2. The dimensionless parameters of 
the system are the Reynolds number Re, the Froude number F and Schmidt number 
Sc, where Re = Ud/v, F = U/(gd) i  and Sc = v /D ,  in which v is the kinematic 
viscosity, g is the gravitational acceleration and D is the diffusivity. 

It should be noted that in this formulation the source-densimetric Froude number 
Fs does not appear explicitly as a parameter. However, F, may be related to F ,  the 
inflow densitty anomaly ye and the volumetricaflux ratio of the stream divided by the 
inflow by noting that F, = (Ud/Ze W$ ( ~ ~ 1 - 4  &ZRF, where QR is the volumetric flux of 
the streamflow upstream of the source. 

Equations (3.1), (3.2) and (3.3) are solved numerically and are subject to  boundary 
conditions representing the channel floor, upstream and downstream infinity, the free 
surface, and the initial condition representing the instantaneous start of a buoyant 
inflow. The upper boundary is assumed to  be a free surface, and is represented by 
a horizontal plane at z = 1. The rise in the free surface due to  the intrusion of a lighter 
fluid into the ambient fluid is neglected because, as Kao et al. (1978) have 
demonstrated, for the density differences under consideration it is indeed negligible. 
I n  addition, since the channel is infinite in extent, there is no net rise of the free 
surface. On the free surface, i.e. the upper boundary, the shear stress is taken to be 
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zero; hence 5 = 0. Also, on this boundary we allow heat to be transferred such that 
the amount of vertical heat transfer is proportional to the temperature difference 
between the surface temperature of the current and the ambient. The flux of heat 
through the lower boundary is taken to be zero (a constant-temperature boundary 
condition may be used instead). A solid boundary with either a no-slip or pure-slip 
condition is imposed a t  z = 0. The boundary conditions in terms of the dimensionless 
coordinate system may be summarized as follows : 

(i) 

(v) @ = @+m(Z)> y = 0, 5 = 6+m(z) (0 < 2 < 1, .++ a), 
(vi) @ = +-&), y = 0, y = L m ( 2 )  (0 < z < 1,  x-t-CO), 

where pis a constant defined by p = Kd/D,  with K denoting an effective heat-exchange 
coefficient. 

I n  addition to  the boundary conditions for @, y and 5, the boundary conditions 
for u and w must be considered in order to compute the nonlinear terms in (3.1) and 
(3.2), in which u and w appear explicitly. These boundary conditions are: u (or 
u = a@/az if pure slip) and w vanish a t  z = 0;  u = 0, w = W,/U at the inlet z = 1, 
-iZe/d < x < i l , / d ; u  = U-,(z)/U,w = Oasx-t-m;u = U+,(z)/U,w = Oasx++ CO. 

Note that U is taken to be the average horizontal velocity at x+ + 03. The hori- 
zontal velocity component a t  z = 1 excluding the source can be computed from 
the defining relations u = a@/az. Also, a t  z = 0 the vertical component of velocity 

The initial condition for a sudden start of an inflow at  the opening is a potential 
flow with 4 satisfying the homogeneous equation V2@ = 0 and with y = 0 everywhere. 
For a source a t  z = 1 ,  I\: = 0 in a uniform stream between frictionless walls a t  z = 0 
and z = 1, i t  can be shown trhat the stream function is given by the formula 

w = -al/2/ax = 0. 

@ = ( l -Qs)z+-((pz+tan-l( tanh~nxtan~~z)) .  Qs 1 

x (3.4) 

Equation (3.4) is for a point source of strength Q, a t  x = 0, z = 1 and uniform flow a t  
x i +  03 between the walls z = 0 and z = 1. The Laplace equation for a source of finite 
width can be solved by numerically integrating V2$ = 0 between z = 0 and z = 1 
and - 00 < x < + co with a finite-width source a t  z = 1 between -$,/d < x < i l e /d .  
One method is over-relaxation, which is a numerical-analysis procedure for elliptic 
equations. Equation (3.4) provides the necessary guess for the potential-flow initial 
condition sought. If an initial condition for a point source in a shear flow is sought, 
then the first term on the right-hand side of (3.4), viz (1 -Qs )  z ,  may be replaced by 

(1 --I&) (a, 2 +a2 z2 + u3 z3>, (3 .5)  
where, for a uniform flow as xi.- 03, a, = 1 ,  a2 = a3 = 0 ;  for a linear shear flow 
(Couette flow) as x+- co, u2 = 1, a,  = a2 = 0; and for a parabolic profile (Poiseuilk 
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flow) as x+-00, a, = 0, a2 = +;, a3 = -8. The initial vorticity distribution is zero 
for the first case, constant for the second and equal to a2/az2 of (3.5) for the third. 
It is assumed that the source flow is initially irrotational. 

When the density change is due to temperature difference in the surface current, 
changes in surface tension due to  horizontal temperature variation a t  the free surface 
induce a shear stress a t  the free surface. As pointed out by Kao et al. (1978), it can 
be shown that for the temperatures considered in the present investigation the effect 
of free-surface curvature is negligible. 

3.2. Stretched coordinate system 
The horizontal scale in the present problem extends from minus infinity to plus 
infinity. A dilemma is posed by conflicting requirements : keeping the finite-difference 
grid mesh fine in the vicinity of the source, where the gradients are largest; and, at 
the same time, having the outer grid points far enough away from the source for them 
to approximate closely the infinities. Because the outer boundaries are not actually 
a t  infinity, they require special treatment to  prevent the inevitable partial reflection 
whenever the fastest-propagating disturbances reach them. One approach to allevi- 
ating the problem of the infinite domain is to  transform the infinite domain into a 
finite domain ; thence the boundary conditions a t  infinity can be handled directly. 
In addition the resolution in the vicinity of the source is increased. This method of 
improving accuracy while maintaining numerical stability is applied herein. The 
objective is to maintain equal grid spacings, which are more desirable than unequal 
grid spacings from the viewpoint of numerical accuracy (see Roache 1972). A similar 
method was applied by Pao & Kao (1974). 

We seek a coordinate system (Z, Z )  whose mapping to  ordinary Cartesian coordinates 
(z, z )  is such that X varies from - 1 to + 1 as x varies from - 00 to + 00, and 2 varies 
from 0 to + 1 as z varies from 0 to + 1. The reason for transformation of the vertical 
( z )  coordinate is so that i t  has the property of increasing the resolution of the flow- 
field in the vicinity of the free surface. This property is desired because the source 
of thermal discharge is located at the free surface, and i t  is expected that the 
discharged fluid will float in the vicinity of the free surface as it propagates from the 
source. The transformations for such a system are given by 

% = tanhax, (3.6) 

sinhbz 
sinh b ' 

z = -  (3.7) 

where a and b are scale factors corresponding to the horizontal and vertical coordinate 
transformations respectively. Upon substituting the transformation relations (3.6) 
and (3.7) into the equations of motion (3.1)-(3.3), we obtain 

(3.10) 
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where 

p ,  = a ( l - P ) ,  p ,  = -2a5pl, 

(1 + [5sinhbl2};, q2 = b22. 
b 

q1 =sinhb 
If p, = q1 = 1 and p ,  = q2 = 0 then the coordinate system becomes the unstretched 
system. 

3.3. Numerical-analysis scheme 
The numerical integration method applied to  investigate the problem of a thermal 
inflow into the current of a stream is an explicit finite-difference method that 
possesses both the transportive and conservative properties described in detail by 
Roache (1972). Central differences in space and forward differences in time are used, 
except for the nonlinear terms in the equations of motion, for which a special 
three-point non-central differencing method is adopted. The latter is analogous to the 
method described and applied by Torrance & Rockett (1969) and Pao & Kao (1974). 
Equations (3.8) and (3.9) are parabolic, while (3.10) is elliptic. Therefore (3.10) is 
solved by a standard over-relaxation technique. This scheme has been successfully 
applied by Pao & Kao (1974) and Kao et al. (1978) in studies of similar problems (for 
details of applying this scheme see Pao & Kao 1974). The scheme is explicit ; therefore, 
in comparison with some implicit schemes, smaller time steps are required. However, 
it is the evolution of the flow and not the large-time solutions that is of interest here. 
This finite-difference scheme retains something of the second-order accuracy of 
centred space derivatives. The stability of the scheme is gained from the non-centred 
space derivatives for the nonlinear advective terms that result in computational 
damping (see Torrance 1968). 

This damping acts very much like a diffusive effect. The vorticity is known to be 
most sensitive to numerical error; see Lugt & Haussling (1974). Therefore, in the 
present study the truncation errors, i.e. the terms that cause the false diffusion, in 
the solution of the vorticity equation were examined in order to  establish the 
numerical accuracy of the computational results. A computer code was written to  
calculate the false diffusion throughout the domain of interest. The false diffusion was 
compared with the advective term and the physical diffusion term a t  all the grid 
points. The results of the comparison confirmed the results presented by Kao et al. 
(1978). Therefore the false diffusion (as expected) did not mask the physics of the 
problem. Indeed, a comparison of results obtained with a higher-order scheme (which 
does not contain the large false diffusion formally found in the finite-difference scheme 
described above) confirmed this. I n  fact, i t  is concluded that, since two different 
numerical schemes led to the same results, the numerical-analysis method selected 
is correct, and the false diffusion does not mask the physics. 

The higher-order scheme was based on central differences in space and the 
DuFort-Frankel molecule (as used by Lugt & Haussling 1974). It was abandoned 
in favour of the upwind scheme for two reasons: ( 1 )  it has an error in diffusion that 
propagates against the current which is not in the upwind scheme; for a derivation 
of this problem see Roache (1972); (2) the upwind scheme has been successfully 
applied by Kao et al. in examining the physical properties of similar flowfields. Since 
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Case 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Y e  
-0.003 
-0.003 
-0.009 
-0.012 
-0.005 
-0.003 
-0.003 
-0.0025 
-0.012 
- 0.01 2 

s c  R4 
1 1000 
1 200 
1 200 
1 200 
1 200 
1 200 
1 200 
1 200 
1 20 
1 20 

TABLE 1 .  

F F 
0.003 0.055 
0.009 0.131 
0.009 0.076 
0.009 0.66 
0.030 0.33 
0.009 0.131 
0.009 0.131 
0.025 0.5 
0.009 0.066 
0.012 0.088 

List of overflow 

&s QR 

0.5 0.5 
0.2 0.8 
0.2 0.8 
0.2 0.8 
0.23 0.77 
0.2 0.8 
0.2 0.8 
0.25 1.0 
0.2 0.8 
0.2 0.8 

cases computed 

l,ld 
0.13 
0.267 
0.267 
0.267 
0.4 
0.267 
0.267 
0.4 
0.8 
0.8 

E 
0.0007 
0.0691 
0.0230 
0.0173 
0.357 
0.599 
0.768 
1 .0 
0.0173 
0.0307 

P 
5 
0 
0 
0 
0 
0 
0 
5 
0 
0 

we are interested in the inception of upstream intrusion, the first reason cited dictates 
the use of the upwind scheme. 

The finite-difference mesh selected consisted of 61 grid points in the horizontal 
direction and 41 grid points in the vertical direction. The algorithm or numerical 
procedure adopted in this investigation was described by Kao et al. (1978). A 
computer program was written in Fortran for batch execution and has been 
implemented on a CDC-6000 series computer with a central memory requirement of 
approximately 170K (Octal) of 60 bit words. This word length tends to minimize 
round-off errors. I n  most cases the time increment was set to be 2.0 x Some of 
the figures were created by using an off-line Calcomp plotter. A special computer 
program was prepared to  do the plotting. Needless to say, this plotting procedure 
turned out to be invaluable in the data reduction and for the evaluation of the results. 

4. Results and discussion 
The surface currents produced by a buoyant effluent discharged into a stream that 

were examined in the present study cover a range of inflow (or source) densimetric 
Froude number F, that extends from 0.026 to 1.0. The cases computed are 
summarized in table 1. In  all cases the velocity distribution a t  the mouth of the 
discharge is uniform and vertically downward into the stream ; therefore, its initial 
horizontal momentum is zero. The discharge opening is relatively wide (ZJd varies 
from 0.13 to 0.8); hence the vertical velocity is small enough so that the jet does not 
penetrate far from the free surface. At time zero the density deficiency of the source 
is turned on instantaneously. The upper and lower boundaries of the stream are 
pure-slip except for case 10. Therefore the upstream and downstream velocity profiles 
are initially uniform. In  case 10 a no-slip condition was imposed along the lower 
boundary ; also, the streamwise velocity profile was assumed to  be fully developed 
and parabolic a t  time zero. 

This study determined what is the critical condition for the occurrence of an 
upstream intrusion and what are the various stages in the development process when 
it occurs. Case 1 was computed to examine the principal features of a buoyant surface 
current (or overflow) at small F,. The upstream intrusion for this case is similar to 
the surface currents produced by a buoyant discharge into a quiescent receiving basin. 
Cases 2-5 were computed to examine the conditions required for the occurrence of 
an upstream intrusion. In  addition, cases 6-8 were computed to examine the critical 
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FIGURE 2. Streamlines (a)  and isopycnics ( b )  of an overflow in a uniform, homogeneous current at 
t = 0.15; &, = 0.5, F, = 0.026. Each isopycnic represents successive decreases in y of 0 . 1 ~ ~  from 
the bource value of ye.  

value of the inflow densimetric Froude number by comparing the surface layers 
produced by inflows near critical densimetric conditions (0.5 < < 1.0). A critical 
value of inflow densimetric Froude number is identified. Cases 4, 9 and 10 were 
computed to examine the various stages in the development process of the upstream 
intrusion. The evolution from inception to  a state of zonal equilibrium is described 
for F, < 0.5. Four stages in the development process are identified. The intrusion starts 
as an inviscid gravity current with a propagation speed greater than the surface 
velocity of the stream. The front accelerates to a plateau speed. Subsequently, the 
current decelerates towards a two-zone equilibrium. The first zone is the frontal zone, 
in which the front approaches a steady speed of advance, albeit small. The second 
zone is the zone encompassing the surface current following the frontal zone, in which 
steady state is approached with respect to  the inertial frame of reference. Thus the 
frontal zone moves upstream expanding the following-current zone. I n  all cases, the 
leading edge of the density front is adequately defined by the y = O.ly, isopycnic 
because i t  is near this isopycnic that surface convergence with concomitant down- 
welling occurs. However, it was found that this isopycnic does not necessarily define 
the interface between the following current and the stream fluid. Therefore a criterion 
for the location of the interface between the surface current of the diluted eauent  
and the lower layer of stream fluid in the two-layered following-current zone was 
developed. 
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FIGURE 3. Horizontal length of several upstream intrusions versus time. This figure illustrates the 
effect of source-densimetric Froude number F, on the predicted plateau speed. 

The streamline pattern of case 1 a t  time t = 0.15 is presented in figure 2 ( a )  to  
illustrate that  once the buoyant fluid enters the stream its tendency is to spread 
horizontally and almost immediately (within a few secondst) with a dramatic altering 
of the streamlines from the initial pattern ofa source flow in a channel flow. The inflow 
densimetric Froude number for this case is 0.026. The corresponding isopycnic 
contours are illustrated in figure 2(b). For this time step the buoyant effluent has 
moved against the streamwise current about 1 .Od from the source. The depth of the 
parent pool (i.e. the surface layer below the source location) is approximately 0.12d. 
The frontal region exhibits the characteristic features of buoyant overflows, including 
the characteristic head shape and the outcropping of the isopycnics. Because the 
inflow-layer densimetric Froude number is quite small, the developing surface layer 
(or overflow) is relatively shallow and spreads horizontally such that the upstream 
intrusion a t  this stage is propagating like an inviscid gravity current. I n  fact, in a 
reference frame moving with the upstream front, the upstream gravity current has 
a densimetric Froude number equal to approximately 1 .O;  this is expected based on 
the measurements and predictions of similar surface currents reported by Kao et al. 
(1978), and measurements reported by Keulegan (1958). 

t The characteristic parameters of rivers with relatively weak current in which upstream 
intrusions of buoyant effluents have been observed are as follows (see e.g. Polk et al. 1971). Rivers 
of this type have Froude numbers of order 0.01. If, for example, the depth of the river is 12 m, 
then the average river velocity for a constant-width channel is approximately equal to 11 cm/s. 
Thus the characteristic timescale for this river is about 2 min. 
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FIGURE 4. Surface speed (i.e. the plateau speed) of the upstream front as a function of InF: 
corresponding to the cases in figure 3. This plot illustrates the predicted, extrapolated critical value. 
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FIGURE 5 .  Correlation of the length of the upstream intrusion versus a buoyancy timescale based 
on the inviscid propagation speed of a gravity current for three values of source-densimetric Froude 
numbers represented by cases 2, 4 and 5.  

4.1. Critical condition of upstream intrusion 
If upstream intrusion occurs there are four successive stages of development. They 
are : initial acceleration, peak (or plateau) speed, deceleration and equilibrium. The 
first two stages govern the initiation process; thus, they are considered next. Cases 
2 4  are all for F, < 0.5. The difference between cases 2 , 3  and 4 is the density anomaly 
of the source. Case 5 is a case where F, = 0.597. For these cases the length of intrusion 
for time steps up to t = 2.0 and the corresponding plateau speeds attained are 
compared in figures 3 and 4 respectively. Extrapolating the curve in figure 4 to 
QP = 0, we obtain an extrapolated critical value of F, equal to  0.71 .  This critical 
case was computed; however, although the upstream frontal speed was less than that 
for case 5, the front still intruded upstream. Therefore the short-time solutions of 
additional cases with 0 . 7  < F, < 1.0  were computed to predict more precisely the 
critical value of F,. The critical value was then determined to be 0.85. Cederwall (197 1) 
determined experimentally that the critical value of the source-densimetric Froude 

11 F L M  140 
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FIGURE 6. (a)  Location of the frontal interface ( y  = 0 . 1 ~ ~ )  and the y = 0 . 5 ~ ~  isopycnic for several 
time steps for a source-densimetric Froude number slightly greater than critical; F, = 1.0, 
Q, = 0.25, Re = 200. ( b )  Streamlines and isopycnics for this case a t  t = 3.6. Each isopycnic 
represents successive decreases in y of 0. lye from the source value ye.  

number F, was of order 1 or less. There was a slight dependence on the parameter 
ZJQ; d ;  the small values of ZJQ; d gave slightly smaller critical Froude numbers. The 
values of 1JQ;d for the cases examined here are all equal to about 0.7. For l,/Q:d 
equal to 0.7,  Cederwall observed a critical value of order 0.8. Thus his experiments 
provide qualitative confirmation of the predicted critical value. 

The upstream fronts for cases near critical (Fs < Fsc) take a relatively long time to 
reach the deceleration stage. The computed solutions for case 5 show that a t  time 
step t = 11.2 (or approximately 22 min from startup) the upstream front has not yet 
begun to decelerate. In  contrast, the frontal motion of case 4 (Fs 4 Fsc) commences to 
decelerate at t = 1 (or approximately 2 min from startup). The predicted results of 
case 5 are characteristic of cases for which the buoyant overflow is near critical. The 
plateau speed for this case is taken to be the average of the upstream frontal advance 
speed. A principal featurc of case 5 and one strikingly different from cases 2-4 (cf. 
figure 3) is that the upstream frontal motion is oscillatory from the time the buoyant 
source is turned on. 

The initiation process may be characterized by the inviscid propagation of a 
gravity-motivated current. If we renormalize the time by multiplying the timescale 
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FIGURE 7 .  ( a )  Propagation speed of the upstream front ( y  = 0 . 1 ~ ~  a t  z = 1) versus time for cases 
4 (F, = 0,132, Re = ZOO), 9 (4 = 0.132, Re = 20) and 10 (4 = 0.195, Re = 20). ( b )  Corresponding 
lengths of upstream intrusion as a function of time. 

in terms of the river scale by ( h o / U d ) / ( d / U )  = (Q,F4)!,  we obtain a new timescale 
associated with the influx of buoyancy. This was done for cases 2 , 4  and 5 .  The length 
of the upstream intrusions versus this new timescale collapse to one line (see figure 
5 ) .  Thus the front starts as an inviscid gravity current. 

The numerical solutions for case 8 are summarized in figure 6. The source-densimetric 
Froude number for this case is exactly equal to unity. We see that in this case no 
upstream intrusion is present. The frontal interface as indicated by the y = 0.1 ye line 
a t  successive times is shown in figure 6 ( a ) .  It is seen that the upstream interface 
assumes a perfectly stationary position. Figure 6 ( b )  shows the streamline and 
isopycnic patterns a t  a fixed time. 'This case represents an F, slightly greater than 
that of the critical case of no upstream intrusion. 

4.2. Development process of upstream intrusion 
The development process or evolution of an upstream intrusion from the initiation 
stage to the stage of zonal equilibrium is determined by examining the solutions of 

11 2 
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FIGIJRE 8. Streamlines (a ) ,  isopycnics ( b )  and isolines of the y-component of vorticity (c) for an 
overflow, case 4, a t  t = 0.7;  F, = 0.132; Re = 200; Q, = 0.2. Each isopycnic represents a successive 
decrease in y of O.ly, from the source value ye .  

three cases, viz 4, 9 and 10. The speeds of propagation of the upstream fronts for 
the three cases are compared in figure 7 (a ) .  Their distances from the source point as 
a function of time are compared in figure 7 ( b ) .  Initial acceleration occurs when the 
characteristic speed of frontal propagation is greater than the local stream speed. 
Because of the resolution of the timescale plotted in figure 7 ( a ) ,  the plateau speed 
appears as a peak in the velocity. I n  the deceleration stage the frontal motion is 
oscillatory with frequencies characteristic of internal waves, i.e. for cases 9 and 10 
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FIGURE 9. (a )  Comparison of streamline patterns and two isopycnics ( y  = O.ly, and 0.57,) a t  time 
t = 0.7 for case 4 (F, = 0.132, &, = 0.2, Re = 200). ( b )  Comparison of the isopycnic representing the 
frontal interface (y = 0.17,) and the y = 0.57, isopycnic for time steps t = 0.7, 0.8 and 0.9. 

the variations in the Brunt-Vaisiilii cut-off frequency that characterizes internal wave 
motion were computed in the frontal region and found to  be representative of the 
frequencies observed. Note that the frequencies of the oscillation decrease with time 
and the amplitude appears to be damped as the front approaches an equilibrium 
speed. 

The length of the intrusion decreases with increase in Froude number; its length 
depends upon the streamwise inertial flux as compared with the gravity-imposed 
pressure field caused by the buoyancy flux of the source. The length also decreases 
with Reynolds number since an increase in viscous dissipation reduces the kinetic 
energy of the intrusion. The theoretical predictions indicate that the frontal region 
is not actually arrested; instead, as the streamwise Reynolds number decreases 
and/or the Froude number increases the terminal speed of frontal propagation is 
decreased. 

The streamlines, isopycnics and isolines of the y-component of vorticit’y for time 
t = 0.7 of case 4 are presented in figure 8. Although the source-densimetric Froude 
number for this case is a factor of five greater than that for case 1, the depth of the 
surface layer is about the same in both cases, i.e. it is about 0.12d (cf. figure 2 b ) .  
Significant increases in the buoyant-surface-layer depth as delineated by the 
y = 0.17, isopycnic (at a location just below the source, i.e. a t  x = 0) begin to occur 
for F, greater than approximately 0.2. (This was determined by comparing the 
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FIGURE 10. Streamlines ( a )  and isopycnics ( b )  for case 4 (F, = 0.132, &, = 0.2, Re = 200) a t  time 
t = 5.4. This plot illustrates the circulatory flow developing in the surface layer following the 
upstream front. 

position of the y = 0 . 1 ~ ~  isopycnics for cases 2 4  during their initial stages of 
development, i.e. for t < 2.) The qualitative structure of the isopycnic contours for 
cases 2 4  is the same as the structure already described for case 1. The distinctly 
deeper frontal zone (or ' head ') depicted by the shape of the y = 0.1 ye isopycnic is 
characteristic of the small source-densimetric Froude-number cases (i.e. F, < 0.5). 

Figure 9 (a )  illustrates the relationship between the y = 0.1 ye isopycnic and the 
streamline pattern a t  time t = 0.7 for case 4. For this case the y = 0 . 1 ~ ~  isopycnic 
appears to model the interface of the frontal region adequately. The surface 
convergence and downwelling are shown to occur about the frontal boundary, defined 
by y = 0 . 1 ~ ~ .  Figure 9 ( b )  illustrates the relationship between the intermediate 
isopycnic ( y  = 0 . 5 ~ ~ )  and the isopycnic representing the front of the overflow (viz 
y = 0.1 ye)  for three time steps. Note that the upstream advance of y = 0.1 ye is not 
the same as the advance of y = 0 . 5 ~ ~ .  As the flowfield evolves, a secondary rotor is 
produced in the surface layer behind the upstream front. At time step t = 0.7 a 
secondary rotor appears to be starting; this is indicated by the isolines of the 
y-component of vorticity presented in figure S(c).  In  order to examine long-time 
solutions a coarser mesh was required. The mesh size was altered and long-time 
solutions were computed. A secondary rotor indeed occurs a t  time steps greater than 
0.7,  as illustrated in figure 10 for time t = 5.4. Head waves can be observed a t  the 
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FIGURE 1 1 .  Balance of vorticity production in current following the upstream front at z = - 2.02 
upstream of the source for the overflow case 4 (F, = 0.132, &, = 0.2, Re = ZOO). 

leading edge of the frontal zones; as expected, the downstream disturbance is the 
weaker one (because the surface layer and stream are coflowing downstream and 
counterflowing upstream). 

The flowfield between the frontal zones approaches steady state in the inertial frame 
of reference sooner than in the frontal regions. Eventually, the upstream frontal 
motion settles down to a nearly constant speed of advance. I n  fact, for t = 5.0 the 
balance of vorticity production a t  a distance x = - 2.02 from the source is a balance 
between the production of vorticity caused by buoyancy and the diffusion of 
vorticity, i.e. 

in this region (see figure 11). Therefore, in the two-layered stratified flow following 
the upstream front, the dynamics of the upper layer is decidedly linear. The 
streamlines and isopycnics are not parallel to the horizontal coordinate and the 
horizontal velocities are not constant with the x-coordinate. This is in contrast with 
the overflow into a quiescent receiving basin for which Kao et al. (1978) predicted 
a constant-depth layer following the frontal zone. Longer-time solutions for this case 
were abandoned because, as indicated in figure 7 ,  very large times (and excessively 
long computer time) would be required to approach equilibrium. Therefore the next 
step was to increase diffusion by decreasing the Reynolds number from 200 to 20. 

Case 9 is the same as 4 except for the order-of-magnitude change in diffusion. As 
expected, the deceleration is substantially decreased for the lower-Reynolds-number 
case (see figure 7) .  The dissipative mechanism of internal friction causes a dramatic 
reduction in upstream propagation of the front. 

Garvine (1974) described a part of the dissipative mechanism that may also work 
to oppose the propagation of a density front, It is associated with the volume flux 
entrained across the interface between the surface layer and the ambient recciving 
water. Negative values of volume flux within the upstream surface current behind 
the front correspond to downward entrainment, i.e. entrainment of lighter surface 
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FIGURE 12. (a) Comparison of the dividing streamline (@ = 0.8) and the y = O.ly, isopycnic for 
t = 5.2forcase9 (F, = 0.132, Re = 20, Q, = 0.2). (b)  Photographsofalaboratory-producedupstream 
intrusion (e E 0.02). 

fluid into the heavier bottom fluid. For this direction of entrainment Garvine (1974) 
showed tha,t more friction is required to slow the frontal system to a steady state. 
He also pointed out that  better correlation with the field data of oceanic fronts was 
obtained when downward entrainment was assumed. I n  the present investigation 
figure 12 ( a )  illustrates the predicted downward entrainment for the two-layer system 
of case 9. The direction of entrainment is easily verified by comparing the location 
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FIGURE 13. Horizontal velocity along the length of the flow region of the free surface ( z  = 1) and 
various time steps for the overflow case 10 (5 = 0.175, Re = 20, &, = 0.2) : Approach t o  equilibrium. 

of the interface identified by the y = O.ly, isopycnic with the dividing streamline 
9 = 0.8. Because 1/. = 0.8 is below y = O.ly,, some of the source fluid was entrained 
into the lower layer. If we examine figure 9 ( a ) ,  we may observe for case 4 the location 
of the 9 = 0.8 streamline in relation to the y = 0 . 1 ~ ~  isopycnic. This streamline is 
below the upstream current ; therefore, downward entrainment occurs in that case 
as well. However, for the near-critical case (case 8), presented in figure 6, upward 
entrainment across the upstream front occurs since the dividing streamline is above 
the y = O.ly, isopycnic, viz the isopycnic that identifies the frontal boundary. For 
the other computed cases close to the critical case, upward entrainment was predicted 
as well. Therefore we observe that the entrainment direction is not necessarily one- 
sided but depends upon the properties of the flowfield. Upward entrainment tends 
to occur for small values of F,, while downward entrainment tends to occur for large 
values of F,. 

Figure 1216) is a photograph of a laboratory-produced upstream intrusion with a 
streamwise Froude number equal to approximately 0.02 and a source-densimetric 
Froude number squared equal to approximately 0.02. This experiment is relatively 
close to case 9. Qualitative agreement of the shape of the surface layers can be 
observed by comparing the shape of the y = 0 . 1 ~ ~  isopycnic in figure 12(a) with the 
shape of the dyed surface in figure 12 (b ) .  The head, or frontal zone, is shallower than 
the following current in both the numerical solution and the experiment. Also, the 
depth of the following current in both cases is approximately equal to one-half the 
channel depth. 

The intrusion process was initiated again to examine the final stage of zonal 
equilibrium for a larger Froude number. In  addition, the upstream velocity profile 
was assumed to  be a fully established shear flow with a parabolic shear profile. 
Therefore, bottom shear was also included. As expected, the deceleration was more 
rapid than in the other two cases (4 and 9). In this case (case 10) we concentrate on 
examining the near-equilibrium solutions, i.e. the solutions fort > 8. By this time the 
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FIGUHE 14. Isopycnic lines corresponding t o  t = 13 for the overflow case 10 
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FIGURE 15. Depth of dividing streamline ($ = 0.8) versus time at x = -2.4 and x = - 1.2 for 

the overflow case 10 (4 = 0.175, Re = 2, &, = 0.2): approach to equilibrium. 

internal waves are damped significantly and the frontal region is propagating slowly 
upstream. The surface velocity profiles for the upstream intrusion are presented in 
figure 13. 

The current behind the front has already reached a steady state in an analogous 
manner with the previous cases. The isopycnic contours and the dividing streamline 
for t = 13 arc presented in figure 14. The bottom of the channel has affected the flow- 
field considerably, as indicated by the bottoming of the y = 0 . 1 ~ ~  isopycnic. The 
strong upward entrainment in the following-current zone illustrates the enhanced 
mixing produced by the bottom shear. As already described, this enhances the 
deceleration process. For this case, the y = 0 . 1 ~ ~  isopycnic identifies the front but 
not the interface of the following current. The y = 0 . 3 ~ ~  remains horizontal, while 
the y = 0 . 1 ~ ~  and the y = 0 . 2 ~ ~  isopycnics extend to the bottom of the channel. 
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FIGURE 17. Balance of production of y-component of vorticity at x = -2.85 
for case 10 (Fs = 0.175, Re = 20, &, = 0.2). 

Figure 15 presents the time variation of the location below the surface of the 0.8 
streamline, i.e. the dividing streamline. A steady state exists with respect to the 
inertial frame of reference in the layer of buoyant fluid behind the front. The 
steady-state velocity profiles a t  x = -2.85 and x = -1.2 confirm this; they are 
illustrated in figure 16. In  the buoyant layer behind the front there is a balance 
between the production of vorticity caused by the nonhomogeneity of the density 
field and the diffusion of vortieity, i.e. 
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(see figure 17). This result again illustrates the linear dynamics of the vorticity 
production in the surface layer. However, in the boundary layer below the buoyant 
layer the dynamics is decidedly nonlinear, with the advection of vorticity playing 
a role, i.e. 

(4.3) 

In  summary, we examined the effects of Reynolds number, Froude number and 
bottom friction. In cases 4 and 9 a uniform flow far upstream of the source and pure- 
slip, zero-shear upper and lower boundary conditions were imposed. Therefore only 
the internal mixing (or interfacial shear) was altered by decreasing the Reynolds 
number for 200 to 20 going from case 4 to case 9 respectively. In  case 10 the upstream 
velocity profile was assumed to be parabolic, the no-slip boundary condition was 
imposed a t  the channel bottom and the Froude number was increased in comparison 
to case 9. Therefore the effects of both bottom friction and ambient flow shear wcre 
computed and described. 

The source-densimetriv Froude number Fs is the principal parameter that  defines 
the structure of an overflow of a buoyant effluent discharged into an open-channel 
flow. Upstream intrusions from the source location are possible when F, is less than 
or equal to the critical value equal to about 0.85 (this assumes that the initial 
horizontal momentum of the buoyant overflow is negligible). When F, is less than 
about 0.5 the upstream intrusion develops distinctly in four successive stages, viz 
initial acceleration, peak or plateau speed, deceleration and zonal equilibrium. The 
front accelerates toward the peak speed while the parent pool is increasing in depth. 
Once the effects of viscosity and entrainment intervene and the parent pool reaches 
its equilibrium depth, the upstream front decelerates. During the deceleration stage 
it oscillates a t  frequencies characteristic of internal gravity waves. As the front 
approaches its terminal velocity the waves are damped and the front moves slowly 
upstream. 

A two-zone equilibrium is established when the front ceases to decelerate. I n  the 
frontal zone, the front propagates upstream at a steady velocity expanding the 
current zone following behind i t .  In  the following current the flowfield reaches a 
steady state with respect to the inertial reference frame. I n  the overflow a balance 
is struck between the baroclinic production of vorticity and the vertical diffusion of 
vorticity. The velocity and density fields are stationary within the current region. 
Thus the vorticity dynamics is decidedly linear in the surface layer or gravity current 
behind the front. A criterion for defining the interface between the overflow and the 
receiving stream for the two-layered flow following the front is that the dividing line 
between the upper and lower layers is the line above which the vorticity production 
is linear. 

Finally, the results of this investigation indicate that a totally arrested wedge is 
not possible; however, the intrusion tends towards such a state if the stream Froude 
number is sufficiently large. From a practical viewpoint a totally arrested wedge and 
a very slow-moving wedge in equilibrium are essentially equivalent. Also, recall that 
the gravity current behind the front approaches a steady, two-layered stratified flow ; 
therefore it is not surprising that the experimental data reported in the literature (e.g. 
Bata 1957) on the geometry of the interface correlates with the Schijf & Schijnfeld 
(1953) two-layered steady-flow model. It is from such a comparison that other 
researchers have concluded that the surface layers were arrested. 
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